Mobility Support in the Internet Using Identifiers

You Wang, Jun Bi, Xiaoke Jiang Sep 12 2012

Contents

- Background
- Overview & Comparison
- Mobility Handling

Mobility in Future Internet

- Mobility is becoming one of the key demands in the future Internet
- Internet was not created to support mobility
- Difference between Internet and Cellular networks
- There still exist many open questions

Current Solutions

- To support mobility
 - Handle dynamic binding between the mobile and its changing locations
- Routing-based method
 - The mobile is represented by its IP address
 - IP Address-location binding: need dynamic routing
 - Handle mobility in the network layer
- Mapping-based method
 - The mobile is represented by identifiers
 - Identifier-IP address binding: need mapping functions
 - Handle mobility in the overlay above the network layer

Identifier-based Solutions

- To support mobility in the global Internet
 - Routing-based solutions may not scale well
 - Mapping-based method should be considered
- Identifier-based solutions
 - A new identifier namespace
 - For not only mobility, but also multi-homing multicast, routing scalability, security, ...
 - They differ in many aspects in achieving various design goals

Contents

- Background
- Overview & Comparison
- Mobility Handling

Overview

Solution	Goals	Definition/Structure	Implementation
TCP-Migrate	Mobility	Domain names/Hierarchical	Host change/Transport layer
MobileIP	Mobility	IP address/Hierarchical	Network change
ILNP	Mobility/Multi-homing	IP address suffix/Flat	Host change/Network layer
HIP	Mobility/Multi- homing/Security	Hash of public Key/Flat	Host change/Network layer
LISP	Routing Scalability/Mobility	IP address/Hierarchical	Network change
Serval	Service access/Mobility	Service ID	Host/Network change
13	Mobility/Multicast	/	Clean-slate
FARA/Mobili ryFirst/	Future Internet Architectures	/	Clean-slate

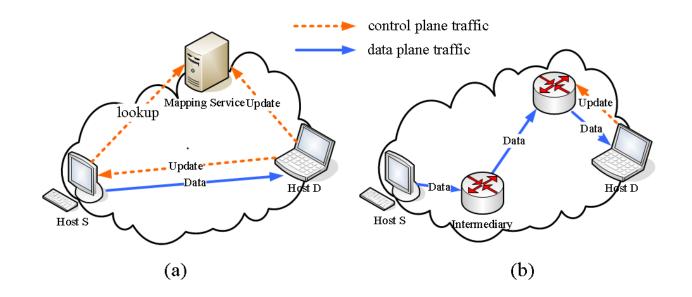
Definition of Identifiers

- IP addresses
 - Mobile IP, LISP
 - Names of nodes in the network layer
- End-point identifier
 - Names of devices/processes/...
- Others
 - Names of services/user/context/content/...
- Different definitions meet various design requirements
- Multiple identifiers may coexist in future Internet

Structure of Identifiers

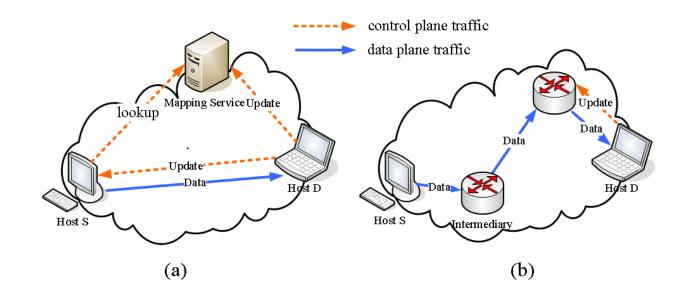
- Hierarchical identifiers
 - IP address/Domain Name
 - Proposals: Mobile IP/TCP Migrate/...
 - Rely on existing infrastructure for resolution
 - IP network/DNS
- Flat identifiers
 - Self-authenticating names: hash of the public key
 - Proposals: HIP/NID/...
 - Security enhancements
 - Require additional resolution mechanisms (DHT)

Implementation Issue

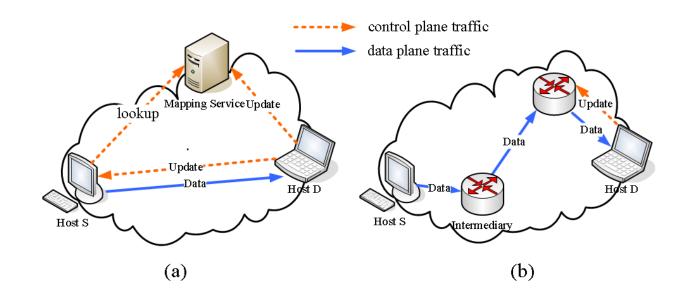

- Below/in the transport layer
 - Keep API unchanged, but need to modify TCP/IP stack
 - Re-structure brings new features (multi-path)
- Above the transport layer
 - No modification to TCP/IP stack, but application needs rewriting
 - May need interactions between layers
- In the application layer
 - Easier to implement and deploy
 - Repeat the same functions in various apps
 - Not enough knowledge about the lower layers

Contents

- Background
- Overview & Comparison
- Mobility Handling


Resolution on End-nodes

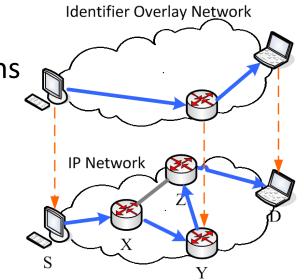
- Both ends are aware of each other's identifiers and exact location
- Most solutions rely on DNS
- Proposals: ILNP/HIP/TCP Migrate/Serval/...


Resolution with Intermediaries

- One or both ends are not aware of the exact locations of its correspondent
- Employ rendezvous to resolve identifiers
- Proposals: Mobile IP/I3/LISP/NID/...

Hybrid Solutions

- Enable both types of resolution methods
- Clean-slate designs that highlight mobility support using identifiers
- Proposals: FARA/MobilityFirst/...



Mobility Management

- Location management
 - In cellular network: Track the location of MT
 - Location update/call delivery
 - In the Internet: maintain/disseminate mobile's identifierlocator bindings
 - Mapping update/lookup/...
- Handoff management
 - In cellular network: keep a MT's connection active when roaming
 - In the Internet: Ensure packets are forwarded to the mobile's latest location in time

Another Viewpoint

- Identifier-based solutions: handle mobility in the overlay network
 - ID-IP resolution is a level of indirection
 - Overlay routing: based on identifiers
- Location management
 - Disseminate routing information
 - Set up logical links towards destinations
- Handoff management
 - Maintain the logical links
 - An individual protocol for handover

Location Management

- Rely on a global infrastructure
 - DNS/DHT/...
 - Run a centralized/distributed protocol
 - Mapping storage/lookup/update
- Not a particular research point in mobility-related solutions
 - Widely studied in many areas

Handoff Management

- Keep the mobile's mapping up-to-date
 Propagate new mappings in the overlay network
- Mobility may bring frequent mapping updates
 - A heavy overhead to the overlay network
 - Cause more packet loss due to stale mappings
 - A key issue in mobility-related solutions

Handoff Management: Tradeoff

- Localize the mapping updates
 - Deploy rendezvous
 - Introduce intermediary nodes in the overlay
 - Benefits in both lowering control overhead and keeping mappings up-to-date
 - But may result in a path stretch in the data plane
 - As packets need to pass the rendezvous
- Tradeoff between propagation scope of mapping updates and routing path stretch
 - loss of mapping information on the overlay nodes

Handoff Management: Solutions

- End-to-end ways
 - Propagate mapping updates to all the correspondent
 - No path stretch, but have drawbacks in some scenarios
 - For frequent roaming nodes, packet-loss sensitive apps, ...
- Employ rendezvous
 - Propagate mapping updates to fewer nodes
 - May bring path stretch
 - For nodes away from rendezvous, delay-sensitive apps, ...
- Hybrid solutions?
 - Choose optimal resolution methods in different mobility scenarios

Conclusion

- Various solutions take diverse ways to support mobility in the Internet
- Mobility protocols may be heterogeneous in the future Internet
 - Different protocols to meet various service demands

Questions?

Thank you!